Is it correct that a Borel probability measure $\sigma$ on the complex unit circle $\mathbb{T}$ is symmetric (i.e. $\sigma(A)=\sigma(\overline{A})$ for every Borel set) iff $\hat{\sigma}(n)=\hat{\sigma}(-n)$ for every $n\in\mathbb{Z}$?
via Recent Questions - Mathematics - Stack Exchange http://math.stackexchange.com/questions/290502/an-equivalent-condition-for-a-measure-on-mathbbt-to-be-symmetric
0 comments:
Post a Comment